Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sphingolipid signaling in yeast: potential implications for understanding disease.

Identifieur interne : 000F76 ( Main/Exploration ); précédent : 000F75; suivant : 000F77

Sphingolipid signaling in yeast: potential implications for understanding disease.

Auteurs : Sharon Epstein [Suisse] ; Howard Riezman

Source :

RBID : pubmed:23276973

Descripteurs français

English descriptors

Abstract

Sphingolipids are essential components of membranes and important for cellular integrity. The main focus of research in the past years has been to demonstrate their role as second messengers. The yeast Saccharomyces cerevisiae is an excellent model for the study of sphingolipids, because the first steps of this metabolic pathway are highly conserved among fungal, plant and the animal kingdoms. The yeast model is a valuable system for the understanding of pathways and development of tools that will help to better understand and intervene into the molecular mechanisms controlling health and disease. Different classes of sphingolipids have been shown to act in different pathways. Sphingoid bases were shown to be involved in protection against a series of stresses such as heat shock, osmotic stress and low pH. Ceramides have been shown to be involved in G1 arrest, heat shock response and more recently as a target of the TORC 2. Complex sphingolipids are essential for cell wall integrity and proper localization of GPI anchored proteins.

DOI: 10.2741/e599
PubMed: 23276973


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Sphingolipid signaling in yeast: potential implications for understanding disease.</title>
<author>
<name sortKey="Epstein, Sharon" sort="Epstein, Sharon" uniqKey="Epstein S" first="Sharon" last="Epstein">Sharon Epstein</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, University of Geneva, Sciences II, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biochemistry, University of Geneva, Sciences II, 30 quai Ernest Ansermet, CH-1211 Geneva 4</wicri:regionArea>
<orgName type="university">Université de Genève</orgName>
<placeName>
<settlement type="city">Genève</settlement>
<region nuts="3" type="region">Canton de Genève</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Riezman, Howard" sort="Riezman, Howard" uniqKey="Riezman H" first="Howard" last="Riezman">Howard Riezman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23276973</idno>
<idno type="pmid">23276973</idno>
<idno type="doi">10.2741/e599</idno>
<idno type="wicri:Area/Main/Corpus">001069</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001069</idno>
<idno type="wicri:Area/Main/Curation">001069</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001069</idno>
<idno type="wicri:Area/Main/Exploration">001069</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Sphingolipid signaling in yeast: potential implications for understanding disease.</title>
<author>
<name sortKey="Epstein, Sharon" sort="Epstein, Sharon" uniqKey="Epstein S" first="Sharon" last="Epstein">Sharon Epstein</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, University of Geneva, Sciences II, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biochemistry, University of Geneva, Sciences II, 30 quai Ernest Ansermet, CH-1211 Geneva 4</wicri:regionArea>
<orgName type="university">Université de Genève</orgName>
<placeName>
<settlement type="city">Genève</settlement>
<region nuts="3" type="region">Canton de Genève</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Riezman, Howard" sort="Riezman, Howard" uniqKey="Riezman H" first="Howard" last="Riezman">Howard Riezman</name>
</author>
</analytic>
<series>
<title level="j">Frontiers in bioscience (Elite edition)</title>
<idno type="eISSN">1945-0508</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Cycle Checkpoints (physiology)</term>
<term>Heat-Shock Response (physiology)</term>
<term>Mechanistic Target of Rapamycin Complex 2 (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Multiprotein Complexes (metabolism)</term>
<term>Osmotic Pressure (physiology)</term>
<term>Saccharomyces cerevisiae (MeSH)</term>
<term>Signal Transduction (physiology)</term>
<term>Sphingolipids (biosynthesis)</term>
<term>Sphingolipids (metabolism)</term>
<term>Sphingolipids (physiology)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Complexe-2 cible mécanistique de la rapamycine (MeSH)</term>
<term>Complexes multiprotéiques (métabolisme)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Points de contrôle du cycle cellulaire (physiologie)</term>
<term>Pression osmotique (physiologie)</term>
<term>Réaction de choc thermique (physiologie)</term>
<term>Saccharomyces cerevisiae (MeSH)</term>
<term>Sphingolipides (biosynthèse)</term>
<term>Sphingolipides (métabolisme)</term>
<term>Sphingolipides (physiologie)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Transduction du signal (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Sphingolipids</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Multiprotein Complexes</term>
<term>Sphingolipids</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Sphingolipids</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Mechanistic Target of Rapamycin Complex 2</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Sphingolipides</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexes multiprotéiques</term>
<term>Sphingolipides</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Points de contrôle du cycle cellulaire</term>
<term>Pression osmotique</term>
<term>Réaction de choc thermique</term>
<term>Sphingolipides</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Cell Cycle Checkpoints</term>
<term>Heat-Shock Response</term>
<term>Osmotic Pressure</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Models, Biological</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Complexe-2 cible mécanistique de la rapamycine</term>
<term>Modèles biologiques</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Sphingolipids are essential components of membranes and important for cellular integrity. The main focus of research in the past years has been to demonstrate their role as second messengers. The yeast Saccharomyces cerevisiae is an excellent model for the study of sphingolipids, because the first steps of this metabolic pathway are highly conserved among fungal, plant and the animal kingdoms. The yeast model is a valuable system for the understanding of pathways and development of tools that will help to better understand and intervene into the molecular mechanisms controlling health and disease. Different classes of sphingolipids have been shown to act in different pathways. Sphingoid bases were shown to be involved in protection against a series of stresses such as heat shock, osmotic stress and low pH. Ceramides have been shown to be involved in G1 arrest, heat shock response and more recently as a target of the TORC 2. Complex sphingolipids are essential for cell wall integrity and proper localization of GPI anchored proteins.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23276973</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>06</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>12</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1945-0508</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>5</Volume>
<PubDate>
<Year>2013</Year>
<Month>Jan</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Frontiers in bioscience (Elite edition)</Title>
<ISOAbbreviation>Front Biosci (Elite Ed)</ISOAbbreviation>
</Journal>
<ArticleTitle>Sphingolipid signaling in yeast: potential implications for understanding disease.</ArticleTitle>
<Pagination>
<MedlinePgn>97-108</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Sphingolipids are essential components of membranes and important for cellular integrity. The main focus of research in the past years has been to demonstrate their role as second messengers. The yeast Saccharomyces cerevisiae is an excellent model for the study of sphingolipids, because the first steps of this metabolic pathway are highly conserved among fungal, plant and the animal kingdoms. The yeast model is a valuable system for the understanding of pathways and development of tools that will help to better understand and intervene into the molecular mechanisms controlling health and disease. Different classes of sphingolipids have been shown to act in different pathways. Sphingoid bases were shown to be involved in protection against a series of stresses such as heat shock, osmotic stress and low pH. Ceramides have been shown to be involved in G1 arrest, heat shock response and more recently as a target of the TORC 2. Complex sphingolipids are essential for cell wall integrity and proper localization of GPI anchored proteins.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Epstein</LastName>
<ForeName>Sharon</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of Geneva, Sciences II, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Riezman</LastName>
<ForeName>Howard</ForeName>
<Initials>H</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>01</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Front Biosci (Elite Ed)</MedlineTA>
<NlmUniqueID>101485240</NlmUniqueID>
<ISSNLinking>1945-0494</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013107">Sphingolipids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076225">Mechanistic Target of Rapamycin Complex 2</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D059447" MajorTopicYN="N">Cell Cycle Checkpoints</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018869" MajorTopicYN="N">Heat-Shock Response</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076225" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009997" MajorTopicYN="N">Osmotic Pressure</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013107" MajorTopicYN="N">Sphingolipids</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>1</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>1</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>6</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23276973</ArticleId>
<ArticleId IdType="pii">E599</ArticleId>
<ArticleId IdType="doi">10.2741/e599</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suisse</li>
</country>
<region>
<li>Canton de Genève</li>
</region>
<settlement>
<li>Genève</li>
</settlement>
<orgName>
<li>Université de Genève</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Riezman, Howard" sort="Riezman, Howard" uniqKey="Riezman H" first="Howard" last="Riezman">Howard Riezman</name>
</noCountry>
<country name="Suisse">
<region name="Canton de Genève">
<name sortKey="Epstein, Sharon" sort="Epstein, Sharon" uniqKey="Epstein S" first="Sharon" last="Epstein">Sharon Epstein</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F76 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000F76 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23276973
   |texte=   Sphingolipid signaling in yeast: potential implications for understanding disease.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23276973" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020